Friday, November 21, 2014

Building Pillars of MesoScale Particles on a Surface

Let’s build layers of (macromolecular) material on a surface. If the material were lego pieces, then the amount of coverage at any given point would be precisely the number that fell there and connected (interlocked). In the simplest cases, you might imagine the same type of construction on a macromolecular scale surface with nano sized bricks. The trouble is that at that small length scale, particles are no longer rigid. The possibility of such softness allows for higher density layers and even a lack of certainty as to which layer you are in. This leads to a roughness in the surface due to the fact that the soft legos stack more in some places than others. Moreover, there will be regions without any legos at all which means that the surface will not be completely covered. This led us to ask: What is the surface coverage as a function of the amount of macromolecular material coated on the surface and the degree of softness of that material?

As in our recent work using tricked-up hard particles, we wondered whether we could answer this question without using explicit soft particle interactions. It does, indeed, appear to work in the sense that we are able to capture the differences in coverage of the surface between a metastable coverage in which particles once trapped at a site remain there, and the relaxed coverage in which particles are allowed to spread across the surface. We also found that relaxation leads to reduced coverage fractions rather than larger coverage as one might have expected a spreading of particles due to the relaxation.

This work was performed by my graduate student, Dr. Galen Craven, in collaboration with a research scientist in my group, Dr. Alex Popov. The title of the article is "Effective surface coverage of coarse grained soft matter.” The work was funded by the NSF. It was published on-line in J. Phys. Chem. B back in July, and I’ve been waiting to write this post hoping that it would hit the presses. Unfrotunately, it’s part of a Special Issue on Spectroscopy of Nano- and Biomaterials which hasn’t quite yet been published. But I hope that it will be soon! Click on the doi link to access the article.

No comments:

Post a Comment